Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Inherit Metab Dis ; 47(2): 374-386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37870986

ABSTRACT

Sulfatases catalyze essential cellular reactions, including degradation of glycosaminoglycans (GAGs). All sulfatases are post-translationally activated by the formylglycine generating enzyme (FGE) which is deficient in multiple sulfatase deficiency (MSD), a neurodegenerative lysosomal storage disease. Historically, patients were presumed to be deficient of all sulfatase activities; however, a more nuanced relationship is emerging. Each sulfatase may differ in their degree of post-translational modification by FGE, which may influence the phenotypic spectrum of MSD. Here, we evaluate if residual sulfatase activity and accumulating GAG patterns distinguish cases from controls and stratify clinical severity groups in MSD. We quantify sulfatase activities and GAG accumulation using three complementary methods in MSD participants. Sulfatases differed greatly in their tolerance of reduction in FGE-mediated activation. Enzymes that degrade heparan sulfate (HS) demonstrated lower residual activities than those that act on other GAGs. Similarly, HS-derived urinary GAG subspecies preferentially accumulated, distinguished cases from controls, and correlated with disease severity. Accumulation patterns of specific sulfatase substrates in MSD provide fundamental insights into sulfatase regulation and will serve as much-needed biomakers for upcoming clinical trials. This work highlights that biomarker investigation of an ultra-rare disease can simultaneously inform our understanding of fundamental biology and advance clinical trial readiness efforts.


Subject(s)
Lysosomal Storage Diseases , Multiple Sulfatase Deficiency Disease , Humans , Multiple Sulfatase Deficiency Disease/genetics , Sulfatases , Glycosaminoglycans , Heparitin Sulfate , Oxidoreductases Acting on Sulfur Group Donors , Patient Acuity
2.
Mol Genet Metab ; 141(2): 108116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161139

ABSTRACT

Multiple sulfatase deficiency (MSD) is an ultra-rare, inherited lysosomal storage disease caused by mutations in the gene sulfatase modifying factor 1 (SUMF1). MSD is characterized by the functional deficiency of all sulfatase enzymes, leading to the storage of sulfated substrates including glycosaminoglycans (GAGs), sulfolipids, and steroid sulfates. Patients with MSD experience severe neurological impairment, hearing loss, organomegaly, corneal clouding, cardiac valve disease, dysostosis multiplex, contractures, and ichthyosis. Here, we generated a novel human model of MSD by reprogramming patient peripheral blood mononuclear cells to establish an MSD induced pluripotent stem cell (iPSC) line (SUMF1 p.A279V). We also generated an isogenic control iPSC line by correcting the pathogenic variant with CRISPR/Cas9 gene editing. We successfully differentiated these iPSC lines into neural progenitor cells (NPCs) and NGN2-induced neurons (NGN2-iN) to model the neuropathology of MSD. Mature neuronal cells exhibited decreased SUMF1 gene expression, increased lysosomal stress, impaired neurite outgrowth and maturation, reduced sulfatase activities, and GAG accumulation. Interestingly, MSD iPSCs and NPCs did not exhibit as severe of phenotypes, suggesting that as neurons differentiate and mature, they become more vulnerable to loss of SUMF1. In summary, we demonstrate that this human iPSC-derived neuronal model recapitulates the cellular and biochemical features of MSD. These cell models can be used as tools to further elucidate the mechanisms of MSD pathology and for the development of therapeutics.


Subject(s)
Induced Pluripotent Stem Cells , Multiple Sulfatase Deficiency Disease , Humans , Leukocytes, Mononuclear/metabolism , Neurons/pathology , Sulfatases , Oxidoreductases Acting on Sulfur Group Donors
3.
Beilstein J Nanotechnol ; 6: 1568-79, 2015.
Article in English | MEDLINE | ID: mdl-26425408

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products, thus understanding their health and environmental impacts is necessary to appropriately manage their risks. To keep pace with the rapid increase in products utilizing engineered ZnO NPs, rapid in silico toxicity test methods based on knowledge of comprehensive in vivo and in vitro toxic responses are beneficial in determining potential nanoparticle impacts. To achieve or enhance their desired function, chemical modifications are often performed on the NPs surface; however, the roles of these alterations play in determining the toxicity of ZnO NPs are still not well understood. As such, we investigated the toxicity of 17 diverse ZnO NPs varying in both size and surface chemistry to developing zebrafish (exposure concentrations ranging from 0.016 to 250 mg/L). Despite assessing a suite of 19 different developmental, behavioural and morphological endpoints in addition to mortality in this study, mortality was the most common endpoint observed for all of the ZnO NP types tested. ZnO NPs with surface chemical modification, regardless of the type, resulted in mortality at 24 hours post-fertilization (hpf) while uncoated particles did not induce significant mortality until 120 hpf. Using eight intrinsic chemical properties that relate to the outermost surface chemistry of the engineered ZnO nanoparticles, the highly dimensional toxicity data were converted to a 2-dimensional data set through principal component analysis (PCA). Euclidean distance was used to partition different NPs into several groups based on converted data (score) which were directly related to changes in the outermost surface chemistry. Kriging estimations were then used to develop a contour map based on mortality data as a response. This study illustrates how the intrinsic properties of NPs, including surface chemical modifications and capping agents, are useful to separate and identify ZnO NP toxicity to zebrafish (Danio rerio).

SELECTION OF CITATIONS
SEARCH DETAIL
...